
2020-11-23

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL

Prof. Hiren Patel, Ph.D., P.Eng.

Prof. Werner Dietl, Ph.D.

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Inheritance

2
Inheritance

Outline

• In this lesson, we will:

– Describe the need for reusing code

– Discuss the idea of reusing a class using inheritance

– Describe how to derive a new class from a given base class

– Describe the implementation details

– Introduce the keywords virtual, override and protected

– Learn all this by looking at two examples deriving classes from
our linked list class

3
Inheritance

Re-use of code

• We have often stressed the reuse of code:

– Do not implement something twice if at all necessary

• When authoring a function, we avoid repeated implementations by
authoring and then calling additional helper functions

– What do we do if two classes are exceptionally similar?

– Specifically,
what happens if one class is an extension of an existing class?

4
Inheritance

Extending the functionality of a class

• For example, suppose you are authoring code for an embedded
system where memory is at a premium

– You’d like to author a few variations on linked lists:

• One with no bells and whistles

• One that tracks the size

– Returning the size is reduced to returning a member variable

• One that includes a tail pointer

– Pushing a new node at the back of the linked list is very fast

– Most of the functionality, however, is identical

1 2

3 4

2020-11-23

2

5
Inheritance

Extending the functionality of a class

• Let us compare changes between a simple linked list and one that
includes a list_size_ member variable:

Member function Variations

bool empty() const No change

std::size_t size() const Complete replacement

double front() const No change

void push_front(…)
Perform same action as before
and then increment list_size_

void pop_front(…)
Perform same action as before
and then decrement list_size_

void clear() No change

6
Inheritance

Extending the functionality of a class

• C++ allows you to extend the functionality of an existing class

– Starting with a simple base class such as Linked_list with only
one member variable, p_list_head_, it is possible to derive a new

class that can:

• Include additional member variables and new member functions

• Keep some member functions unchanged and as is

• Override other member functions by executing extra statements as
necessary

• Override yet other member functions by completely rewriting them

7
Inheritance

The derived class

• We begin with the class declarations

– The declaration lets the compiler know Sized_linked_list is a class
// Class declarations

class Node;

class Linked_list;

class Sized_linked_list;

8
Inheritance

The base class

class Linked_list {

public:

Linked_list();

virtual ~Linked_list();

Linked_list(Linked_list const &original) = delete;

Linked_list(Linked_list &&original) = delete;

virtual Linked_list &operator=(Linked_list const &rhs) = delete;

virtual Linked_list &operator=(Linked_list &&rhs) = delete;

virtual double front() const;

virtual bool empty() const;

virtual std::size_t size() const;

virtual void push_front(double new_value);

virtual void pop_front();

virtual void clear();

private:

Node *p_list_head_;

friend std::ostream &operator<<(std::ostream &out,

Linked_list const &list);

};

Declare all member functions
and the destructor to be virtual

5 6

7 8

2020-11-23

3

9
Inheritance

The derived class

• Next, we define the derived class

– We indicate this class is derived from the linked list class

– We add new member variables as appropriate

– Only re-declare member functions you intend to change

– We are not introducing any new member functions here
class Sized_linked_list : public Linked_list {

public:

Sized_linked_list();

virtual std::size_t size() const override;

virtual void push_front(double new_value) override;

virtual void pop_front() override;

private:

std::size_t list_size_;

};

10
Inheritance

Constructors and destructors

• We require a constructor, and the first initialization of the
constructor is to call the constructor of the base class

– With arguments if appropriate

Sized_linked_list::Sized_linked_list():

Linked_list{},

list_size_{ 0 } {

// Empty constructor

}

11
Inheritance

Overriding member functions

• Now, we completely override the size member function by simply
simply re-implementing it

// This function is completely overwritten

std::size_t Sized_linked_list::size() const {

return list_size_;

}

12
Inheritance

Adding to existing functionality

• For push front and push back,
the base class implementations do most of the work

– We only have to increment or decrement list_size_

void Sized_linked_list::push_front(double new_value) {

// Begin critical code:

Linked_list::push_front(new_value);

++list_size_;

// End critical code

}

void Sized_linked_list::pop_front() {

// Begin critical code

Linked_list::pop_front(new_value);

--list_size_;

// End critical code

}

9 10

11 12

2020-11-23

4

13
Inheritance

Example

• Now we can use this new class:

int main() {

Linked_list slow{};

Sized_linked_list fast{};

for (int k{0}; k <= 1000; ++k) {

slow.push_front(0.1*k);

fast.push_front(0.1*k);

}

std::cout << slow.size() << std::endl;

std::cout << fast.size() << std::endl;

return 0;

}

Output:
1001
1001

14
Inheritance

Example

• Is this really working?

– Our example does not demonstrate that any of this works

– You could put print statements in each member functions to see:

• Which member functions are being called

• The order in which the member functions are being called

std::cout << "Calling Linked_list::size()" << std::endl;

std::cout << "Calling Sized_linked_list::size()"

<< std::endl;

15
Inheritance

Extending the functionality of a class

• Let us compare changes between a simple linked list and one that
includes a p_list_tail_member variable:

Member function Variations

bool empty() const No change

std::size_t size() const No change

double front() const No change

double back() const New member function

void push_front(…)
Perform same action as before and
possibly update p_list_tail_

void push_back(…) New member function

void pop_front()
Perform same action as before and
possibly update p_list_tail_

void clear() No change

16
Inheritance

The derived class

• Next, declare and define the derived class

– Only declare member functions you intend to change or add
// Class declarations

class Tailed_linked_list

// Class definitions

class Tailed_linked_list : public Linked_list {

public:

Tailed_linked_list();

virtual double back() const;

virtual void push_front(double new_value) override;

virtual void push_back(double new_value);

virtual void pop_front() override;

private:

Node *p_list_tail_;

};

13 14

15 16

2020-11-23

5

17
Inheritance

Constructors and destructors

• As before,
the constructor first calls the constructor of the base class:

Tailed_linked_list::Tailed_linked_list():

Linked_list{},

p_list_tail_{ nullptr } {

// Empty constructor

}

18
Inheritance

Adding new member functions

• We implement our two new member functions:
double Tailed_linked_list::back() const {

if (!empty()) {

return p_list_tail_->value();

} else {

assert(empty());

throw std::out_of_range{ "The linked list is empty" };

}

}

void Tailed_linked_list::push_back(double new_value) {

if (empty()) {

push_front(new_value);

} else {

p_list_tail_->p_next_node(new Node{ new_value, nullptr });

p_list_tail_ = p_list_tail_->p_next_node();

}

}

19
Inheritance

Adding to existing functionality

• For push front and pop front,
we must keep p_list_tail_ syncrhonized

void Tailed_linked_list::push_front(double new_value) {

Linked_list::push_front(new_value);

if (p_list_tail_ == nullptr) {

p_list_tail_ = p_list_head_;

}

}

void Tailed_linked_list::pop_front() {

Linked_list::pop_front();

if (p_list_head_ == nullptr) {

p_list_tail_ = nullptr;

}

}

20
Inheritance

Accessing private member variables

• Let’s try compiling this:

int main() {

Tailed_linked_list list{};

list.push_front(4.2);

return 0;

}

– We get an error:

example.cpp:149:24: error: 'p_list_head_' is a private member of

'Linked_list'

p_list_tail_ = p_list_head_;

^

./example.cpp:42:11: note: declared private here

Node *p_list_head_;

^

17 18

19 20

2020-11-23

6

21
Inheritance

Private member variables and inheritance

• Derived classes do not have access to private member variables

– This is no different from users accessing private member variables

• However, what happens if a derived class requires access to the
member variables of the base class, as here?

– There is a third access specifier protected

– A member variable or member function labeled protected may be
accessed or called, respectively, by a derived class but not by a user

• There are two solutions:

– Make the member variable p_list_head_ protected

– Leave the member variables private but create a protected member
function that gives access to that value

22
Inheritance

Making private members protected

• The easy but more insecure method is to change the private label to
protected:

class Linked_list {

public:

// Public member functions

protected:

Node *p_list_head_;

};

class Tailed_linked_list : public Linked_list {

public:

// Public member functions

protected:

Node *p_list_tail_;

};

23
Inheritance

Adding protected access

• The more secure way is to give the author of the derived class access
to the value without allowing that user the opportunity to change it

class Linked_list {

public:

// Public member functions

protected:

Node *p_list_head() const;

private:

Node *p_list_head_;

};

Node *Linked_list::p_list_head() const {

return p_list_head_;

}

24
Inheritance

Adding protected access

• Now, instead of accessing the private member variable directly,
we call the corresponding protected member function:

void Tailed_linked_list::push_front(double new_value) {

Linked_list::push_front(new_value);

if (p_list_tail_ == nullptr) {

p_list_tail_ = p_list_head();

}

}

void Tailed_linked_list::pop_front() {

Linked_list::pop_front();

if (p_list_head() == nullptr) {

p_list_tail_ = nullptr;

}

}

21 22

23 24

2020-11-23

7

25
Inheritance

Adding protected access

• Note that this prevents someone in the derived class from changing
the member variable p_list_head_

• However, it doesn’t prevent other errors, for example:

delete p_list_head();

26
Inheritance

Showing the relationship

• To show the relationship between base classes and derived classes,
we use the following diagram:

– We may say that the sized linked list class inherits from the linked
list class

– We may also say that a “sized linked list is a linked list”

Linked_list

Sized_linked_list Tailed_linked_list

27
Inheritance

Summary

• Following this lesson, you now

– Know how to derive one class from another

– Understand that member functions in the base class must be virtual

– Understand that the derived classes must indicate the base class

– Know that derived classes can not only add new member variables and
new member functions, but can also selectively:

• Keep member functions as defined in the base class

• Add additional functionality to the implementation of the base class
member functions

• Overwrite completely the implementation of the member function in
the base class

– Understand the use of the protected label

28
Inheritance

References

[1] https://en.wikipedia.org/wiki/Linked_list

[2] https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)

#Subclasses_and_superclasses

25 26

27 28

2020-11-23

8

29
Inheritance

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

30
Inheritance

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

29 30

